Parameterized algorithms for load coloring problem
نویسندگان
چکیده
منابع مشابه
Parameterized Algorithms for Load Coloring Problem
One way to state the Load Coloring Problem (LCP) is as follows. Let G = (V,E) be graph and let f : V → {red,blue} be a 2-coloring. An edge e ∈ E is called red (blue) if both end-vertices of e are red (blue). For a 2-coloring f , let r′ f and b′f be the number of red and blue edges and let μf (G) = min{r ′ f , b ′ f}. Let μ(G) be the maximum of μf (G) over all 2-colorings. We introduce the param...
متن کاملParameterized and Exact Algorithms for Class Domination Coloring
A class domination coloring (also called cd-coloring) of a graph is a proper coloring such that for every color class, there is a vertex that dominates it. The minimum number of colors required for a cd-coloring of the graph G, denoted by χcd(G), is called the class domination chromatic number (cd-chromatic number) of G. In this work, we consider two problems associated with the cd-coloring of ...
متن کاملApproximation Algorithms for the Max-coloring Problem
Given a graph G = (V,E) and positive integral vertex weights w : V → N, the max-coloring problem seeks to find a proper vertex coloring of G whose color classes C1, C2, . . . , Ck, minimize ∑k i=1 maxv∈Ciw(v). The problem arises in scheduling conflicting jobs in batches and in minimizing buffer size in dedicated memory managers. In this paper we present three approximation algorithms and one in...
متن کاملOn the Minimum Load Coloring Problem
Given a graph G = (V,E) with n vertices, m edges and maximum vertex degree ∆, the load distribution of a coloring φ : V → {red, blue} is a pair dφ = (rφ, bφ), where rφ is the number of edges with at least one end-vertex colored red and bφ is the number of edges with at least one end-vertex colored blue. Our aim is to find a coloring φ such that the (maximum) load, lφ := 1 m · max{rφ, bφ}, is mi...
متن کاملOn the Parameterized Complexity of the Maximum Edge Coloring Problem
We investigate the parameterized complexity of the following edge coloring problem motivated by the problem of channel assignment in wireless networks. For an integer q ≥ 2 and a graph G, the goal is to find a coloring of the edges of G with the maximum number of colors such that every vertex of the graph sees at most q colors. This problem is NP-hard for q ≥ 2, and has been well-studied from t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Information Processing Letters
سال: 2014
ISSN: 0020-0190
DOI: 10.1016/j.ipl.2014.03.008